


rover by a factor of ten, as compared to the Mars Curiosity
mission, and made it possible to target a landing ellipse with
major and minor axes of 7:7 km and 6:6 km, providing access
to previously inaccessible landing sites [2].

Although TRN has proven to be highly effective in shrinking
the landing ellipse of uncertainty, illumination variations
and sensor measurement noise could introduce differences
between aerial imagery and the onboard orbital map, which
could lead to increased position estimation uncertainty. A
fast and accurate localization method to decrease the robot
position estimation uncertainty can greatly bene�t a planetary
robotic mission and increase the mission’s science return. For
instance, the Perseverance rover can bene�t from long-range
traverses at higher speeds as it is tasked with gathering a
diverse set of martian rock and regolith samples that could be
returned to Earth by the Mars Sample Return campaign being
planned by NASA and the European Space Agency. It is
advantageous to enable fully on-board localization capability,
not reliant on external satellite communications, to be used
for landing site localization and periodic robot localization
during the mission to reduce accumulated error in estimated
robot trajectory.

This paper presents a vision-based localization method for
planetary robotic explorers that relies on a trained convolu-
tional neural network (CNN) to obtain saliency maps from
semantic segmentation of terrain imagery. We study the prob-
lem of ef�cient and robust extraction of landscape contours
and skyline delineation through semantically segmenting the
terrain and sky regions of distant landscapes, as shown in
Figure 2, so that unique and distinctive contours of peaks,
boulders, and general topography of the local environment
can be used as points of reference to establish localization
on digital elevation maps (DEMs) obtained from the Mars
Reconnaissance Orbiter’s HiRISE camera. Global position
estimates are obtained by �nding the optimal match between
contours of the delineated skyline and those of rendered
skylines in the rover’s general region of operation, based on
projected views in the digital elevation models.

The rest of this paper is organized as follows: in Section 2 we
discuss the related work with focus on semantic segmentation
and planetary rover localization. Our CNN-based global lo-
calization method is presented in Section 3, and experimental
results are presented in Section 4. Finally, Section 5 discusses
the conclusion and future research directions.

2. RELATED WORK
Our work lies in the intersection of semantic image seg-
mentation and localization of planetary rovers in large-scale
and unstructured environments. Thus, we review the related
literature in these domains. Accurate on-board localization
of planetary rovers has been an active area of research [3],

[4], [5], [6]. High-precision autonomous localization is
an important capability for on-line path planning and au-
tonomous navigation of mobile planetary robots (e.g., ground
or aerial robots) to ensure their safety and maximize their
science return. Most of the current frameworks primarily
rely on passive vision-based localization and pose estimation
methods, and multiple sensing modalities can be coupled
in order to increase the position estimation accuracy of the
robot. In most terrestrial robotic applications, a low-cost
and ef�cient localization method is to fuse proprioceptive
data, like that from an IMU or onboard vision system [7],
with GPS data. In planetary applications, where GPS signal
is unavailable, vision [8], [9], wheel odometry [10], or a
combination of both are used to propagate the pose of the
robot [11]. Localization of a planetary exploration rover by
registering rover’s terrain imagery to a known aerial map is
studied in a Mars analogue environment in [12] where salient
perceptual features from ground imagery are registered to an
orbital map to achieve localization. While these methods can
be effective in planetary applications, they are often terrain-
dependent and could suffer from drift due to accumulation
of odometry errors in estimated robot motions, particularly
over long-range traverses in feature-less environments with
smooth sand [8]. Off-board localization methods using satel-
lite imagery have been used for high-precision localization
of planetary robots [13], but these methods require reliable
satellite communications and make the localization pipeline
critically dependent upon remote systems.

Recently, active localization [5] and perception-aware path
planning methods have been proposed [6] in order to exploit
the feature-rich terrain in the robot’s local environment to re-
duce localization and pose estimation error of onboard vision-
based system. Moreover, some recent research investigates
the use of simultaneous localization and mapping (SLAM)
algorithms for autonomous planetary rovers to reduce both
the relative and absolute localization errors [14], [15], [16].
SLAM is a commonly used method to enable robots to
create a map of an unknown environment, while localizing
themselves in the map at the same time [17], [18], [19].
Geromichalos et al. [20] propose a SLAM algorithm that
relies on matching high-resolution sensor scans to the local
map created online to improve relative localization. The
method relies on matching the current local map to the
orbiter’s global map at discrete times to avoid issues with
drifting in absolute localization. An adaptive visual SLAM
algorithm for performing traversability analysis and global
localization is presented in [15]. A visual SLAM method
for planetary UAVs that registers images with known DEM
data is presented in [16]. To overcome the scale and appear-
ance difference between on-board UAV images and a pre-
installed digital terrain model, topographic features of UAV
images and DEM are correlated in the frequency domain
via cross power spectrum. In [21], a method of image-
based planetary rover localization is presented by comparing

Figure 2: Semantic segmentation and skyline delineation demonstrated on a Martian panorama (top), with corresponding
semantic segmentation prediction map (middle) and delineated skyline contour (green, bottom).

2
Authorized licensed use limited to: Jet Propulsion Laboratory. Downloaded on August 08,2023 at 15:45:10 UTC from IEEE Xplore.  Restrictions apply. 



detected skylines in images to DEM data, where the method
is reliant upon a wide �eld of view (FOV) panoramic image,
and the skyline is delineated based on luminance in grayscale
images. Localizing a robot by comparing observations to
known terrain maps can be studied in the context of localizing
an image taken in mountainous terrain [22], [23], [24]. Typi-
cally, these methods rely on a relatively-precise prior estimate
of the GPS location where the image was taken. In [23],
imagery of terrestrial terrain are aligned with topographic
maps using edge detection, speci�cally of silhouette edges.
In [24], terrestrial imagery are aligned with topographic maps
using semantic segmentation of the query image. While
both methods show promising performance, they rely on
geotagged imagery, indicating a relatively small region of
uncertainty where the photo was taken as an input and are
unsuitable for global position estimation.

In [22], a method for global localization of monocular camera
images by obtaining a rough position estimate on the range
of 100 m of an image taken anywhere in a large DEM
map is introduced. The method involves using color and
gradient likelihoods to detect the skyline in a query image and
representing this skyline as a collection of small, normalized,
overlapping sections dubbed contourlets. These are com-
pared to DEM-generated contourlets found by rendering a
360-degree FOV projected skyline from an x-y grid of points
at � 100 m spacing to select top location candidates. Using
the ICP algorithm [25], the entire skyline of the query image
is then compared with corresponding FOVs in the top render
candidates using a sliding window and the top ICP match
is selected as the most-likely location and orientation of the
image. In [26] a CNN-based approach to �nding skylines
trained on labels generated through Canny edge detection
[27] and Hough Voting [28] is presented. The method adapts
the MOSSE correlation �lter [29] to determine a position
estimate of the query frame with GPS-level accuracy by
rendering a view based on DEM data from a known camera
heading and FOV at each point in an x-y grid of points
surrounding the true location of the vessel. The MOSSE
�lter correlation score between the query image and each
rendered view is computed with the �nal position estimate
based on a second-order polynomial �t of the maximum
MOSSE correlation scores in the position search grid.

Semantic segmentation is a means of understanding an image
at the pixel level. That is, to predict a class label representing
each pixel in an image and de�ne connected components of
pixels with the same label [30], [31]. DeepLab uses Deep
Convolutional Neural Networks for performing semantic seg-
mentation [32], [33], [34], [35]. The current version of
DeepLab utilized in this paper, DeepLab V3+, incorporates

Atrous Convolution, Fully Connected Conditional Random
Fields, Atrous Spatial Pyramid Pooling, and encoder-decoder
modules. Alternatives to semantic segmentation for �nding
connected components in images include modern grab-cut
style segmentation implementations based on Graph Cut [36],
[37], such as the work presented by Maninis et al. in [38].
These methods, however, typically rely on some user input to
perform the object or foreground-background segmentation.
Grab-cut based object segmentation could be coupled with
CNN-based object detection methods to remove the need for
human input in the segmentation pipeline, but this would
not be an ef�cient alternative to Deep Learning-based tools
developed for semantic segmentation (e.g., DeepLab) for
performing object segmentation with pixel-wise labels. There
are modern alternative network architectures that compete
with and occasionally outperform DeepLab V3+ in semantic
segmentation [39], [40], [41], [42]. However, DeepLab
V3+ was selected due to the high performance, the open-
source tensor�ow implementation, and the well documented
user instructions. In [43] and [44], a method is presented
for semantic segmentation of Martian terrain into seventeen
terrain categories. Notably, sky is not included as a class
in these works, as their purpose is for traversability analysis,
rather than localization, based on the segmented terrain.

3. METHODOLOGY
In this section, we will show how saliency maps obtained
from semantic segmentation of terrain imagery can be used
for global localization of a rover in a Mars body-�xed co-
ordinate system. Figure 3 presents our proposed semantic
segmentation-based localization pipeline. In the rest of this
section, we will introduce each component of the pipeline.

Semantic Segmentation
Semantic segmentation is performed using the most up-to-
date open-source version of DeepLab V3+ [35], an exist-
ing technology. We take common architectures, namely
MobileNet-v2 [45] and Xception65 [46], pretrained on the
ADE20k dataset [47] and perform a �ne-tune training on do-
main speci�c data composed of 3-channel monocular camera
images of Martian landscapes taken by the Curiosity Rover,
selected from NASA JPL’s publicly available Planetary Data
System (PDS) Image Atlas [48]. 24 images were selected
and annotated using the labelme tool [49], with 20 used for
training and 4 for validation. The model was trained for 750
iterations, with a batch size of 2 images. This is a short
�ne-tune training for a semantic segmentation model, as the
model quickly learns to distinguish between the two classes,

Figure 3: An overview of the proposed semantic segmentation-based localization pipeline.
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